Linear Equation: equations with an exponent of one. Graphs are ______.

Standard Form

y = mx + b

Quadratic Equations: equations with an exponent of two (squared). Graphs are _____

Standard Form

$$y = ax^2 + bx + c$$

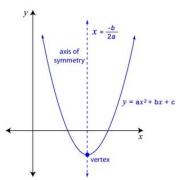
Opening up

Opening down (flipped)

Write the quadratic equation in standard form and determine if the graph opens up or down.

1.)
$$y = 2x^2 + x - 1$$

2.)
$$y = 3 - x - x^2$$


3.)
$$y = -3x^2 + 1 - 4x$$

4.)
$$y = 4 - 3x^2$$

5.)
$$y = x + 9x^2$$

6.)
$$y = 3x^2 + 5x^2 - 3x + 2$$

<u>Vertex</u>: the lowest or the highest point of the graph

Axis of Symmetry: the vertical line through the vertex

$$X = -\frac{D}{2a}$$

Axis of Symmetry and x-coordinate of the vertex

Find the axis of symmetry of the parabola.

7.)
$$y = 2x^2 + 4x - 1$$

8.)
$$y = -x^2 + 2x + 5$$

9.)
$$y = 3x^2 - 5$$

Find the vertex of the parabola. Find x using formula and then plug it back into equation to find y.

10.)
$$y = x^2 + 2x - 1$$

11.)
$$y = -x^2 + 4$$

12.)
$$y = 2x^2 + 4x$$

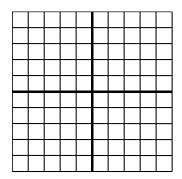
Graph the following quadratic equations. Find the axis of symmetry and the vertex.

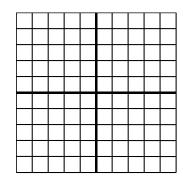
13.
$$y = x^2 - 2x + 3$$

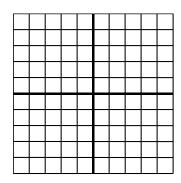
Vertex: _____

Point: _____

14.
$$y = x^2 + 5x - 6$$


Vertex: _____


Point: _____


15.
$$y = -x^2 + 4x - 2$$

Vertex: _____

Point: _____

Standard Form: Practice Problems: pg 253 #20-25

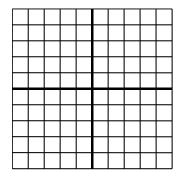
20.)
$$y = x^2 - 2x - 1$$

Vertex: _____

Point: _____

21.)
$$y = 2x^2 - 12x + 19$$

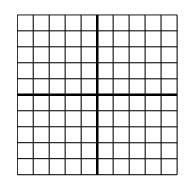
Vertex: _____


Point: _____

22.)
$$y = -x^2 + 4x - 2$$

x = _____

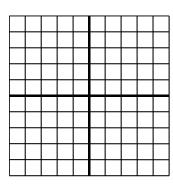
Vertex: _____


Point: _____

23.)
$$y = -3x^2 + 5$$

Vertex: _____

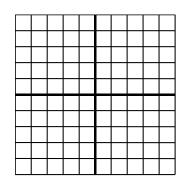
Point: _____

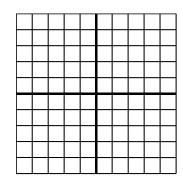


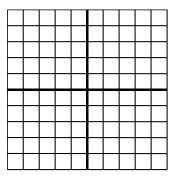
24.)
$$y = \frac{1}{2}x^2 + 4x + 5$$

x = ____

Vertex: _____


Point: _____




25.)
$$y = -\frac{1}{6}x^2 - x - 3$$

Vertex: _____

Point: _____

Opening up

Opening down (flipped)

Determine if the graph opens up or down.

1.)
$$y = (x-2)^2 + 3$$

2.)
$$y = 3(x+2)^2 - 5$$

3.)
$$y = -2(x-1)^2$$

Axis of Symmetry and x-coordinate of the vertex $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ Intercept Form Vertex: (h,k)x = h

Find the axis of symmetry of the parabola.

4.)
$$y = 2(x-5)^2 + 3$$

5.)
$$y = -4(x)^2 - 5$$

6.)
$$y = 7(x+9)^2 + 2$$

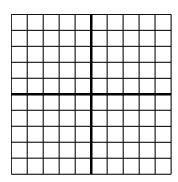
Find the vertex of the parabola (h,k).

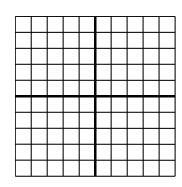
7.)
$$y = (x-3)^2 + 3$$

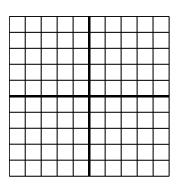
8.)
$$y = \frac{1}{2}(x-6)^2$$

9.)
$$y = (x+1)^2 - 7$$

Graph the following quadratic equations. Find the axis of symmetry and the vertex.


10.
$$y = (x-2)^2 + 1$$


11.
$$y = 3(x+3)^2 + 2$$


12.
$$y = -(x-1)^2 + 3$$

Vertex: _____

Point: _____

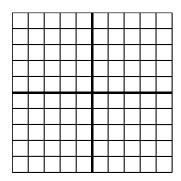
Vertex Form: Practice Problems: pg 253 #26-31

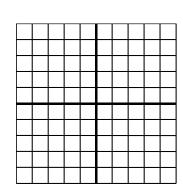
26.)
$$y = (x - 1)^2 + 2$$

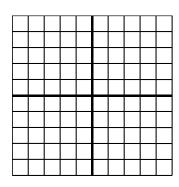
Vertex: _____

Point: _____

27.)
$$y = -(x-2)^2 - 1$$


Vertex: _____


Point: _____


28.)
$$y = -2(x + 3)^2 - 4$$

Vertex: _____

Point: _____

29.)
$$y = 3(x + 4)^2 + 5$$

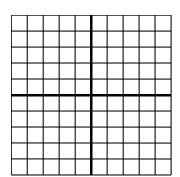
x = ____

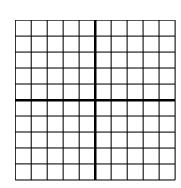
Vertex: _____

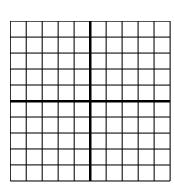
Point: _____

30.)
$$y = -1/3(x + 1)^2 - 1$$

χ = _____


Vertex: _____


Point: _____


31.)
$$y = \frac{5}{4}(x - 3)^2$$

Vertex: _____

Point: _____

Intercept Form

y = a(x - p)(x - q) $\rightarrow p$ and q are the x-intercepts

Opening up

Opening down (flipped)

Determine if the graph opens up or down.

1.)
$$y = (x-2)(x+3)$$

2.)
$$y = -2(x-1)(x-4)$$

3.)
$$y = 2x(x-3)$$

Axis of Symmetry and x-coordinate of the vertex

x is half way between p and q

$$x = \underbrace{p + q}_{2}$$

Find the axis of symmetry of the parabola.

4.)
$$y = -2(x-1)(x-5)$$

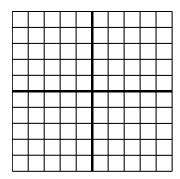
5.)
$$y = 3(x+2)(x-4)$$
 6.) $y = -x(x+5)$

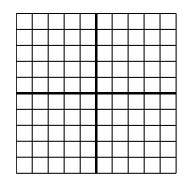
6.)
$$y = -x(x+5)$$

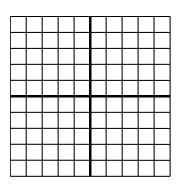
Find the vertex of the parabola. Find x by counting half way between p and q. Find y by plugging x into the given equation.

7.)
$$y = (x + 5)(x - 3)$$

7.)
$$y = (x+5)(x-3)$$
 8.) $y = -4(x+1)(x-1)$ 9.) $y = 3(x-6)(x-4)$


9.)
$$y = 3(x-6)(x-4)$$


Graph the following quadratic equations. Find the axis of symmetry and the vertex.


10.)
$$y = -2(x+2)(x-4)$$

11.)
$$y = -x(x+2)$$

12.)
$$y = (x + 3)(x - 3)$$

Intercept Form: Practice Problems: pg 254 #32 – 37

32.)
$$y = (x - 2)(x - 6)$$

χ = _____

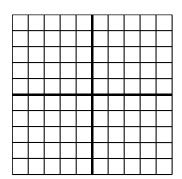
Vertex: _____

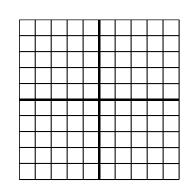
Point: _____

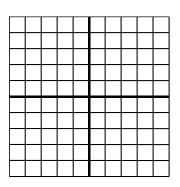
33.)
$$y = 4(x + 1)(x - 1)$$

χ = _____

Vertex: _____


Point: _____


34.)
$$y = -(x + 3)(x + 5)$$


χ = _____

Vertex: _____

Point: _____

35.)
$$y = 1/3(x + 4)(x + 1)$$

χ = _____

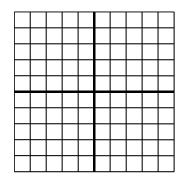
Vertex: _____

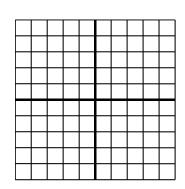
Point: _____

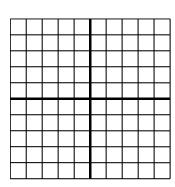
36.)
$$y = -\frac{1}{2}(x-3)(x+2)$$

x = _____

Vertex: _____


Point: _____


37.)
$$y = -3x(x - 2)$$


x = _____

Vertex: _____

Point: _____

